1,186 research outputs found

    tRNA 3\u27-amino-tailing for stable amino acid attachment.

    Get PDF
    Amino acids are attached to the tRNA 3\u27-end as a prerequisite for entering the ribosome for protein synthesis. Amino acid attachment also gives tRNA access to nonribosomal cellular activities. However, the normal attachment is via an ester linkage between the carboxylic group of the amino acid and the 3\u27-hydroxyl of the terminal A76 ribose in tRNA. The instability of this ester linkage has severely hampered studies of aminoacyl-tRNAs. Although the use of 3\u27-amino-3\u27-deoxy A76 in a 3\u27-amino-tailed tRNA provides stable aminoacyl attachment via an amide linkage, there are multiple tailing protocols and the efficiency of each relative to the others is unknown. Here we compare five different tailing protocols in parallel, all dependent on the CCA-adding enzyme [CTP(ATP): tRNA nucleotidyl transferase; abbreviated as the CCA enzyme] to exchange the natural ribose with the modified one. We show that the most efficient protocol is achieved by the CCA-catalyzed pyrophosphorolysis removal of the natural A76 in equilibrium with the addition of the appropriate ATP analog to synthesize the modified 3\u27-end. This protocol for 3\u27-amino-tailing affords quantitative and stable attachment of a broad range of amino acids to tRNA, indicating its general utility for studies of aminoacyl-tRNAs in both canonical and noncanonical activities

    Initiator tRNA genes template the 3\u27 CCA end at high frequencies in bacteria.

    Get PDF
    BACKGROUND: While the CCA sequence at the mature 3\u27 end of tRNAs is conserved and critical for translational function, a genetic template for this sequence is not always contained in tRNA genes. In eukaryotes and Archaea, the CCA ends of tRNAs are synthesized post-transcriptionally by CCA-adding enzymes. In Bacteria, tRNA genes template CCA sporadically. RESULTS: In order to understand the variation in how prokaryotic tRNA genes template CCA, we re-annotated tRNA genes in tRNAdb-CE database version 0.8. Among 132,129 prokaryotic tRNA genes, initiator tRNA genes template CCA at the highest average frequency (74.1%) over all functional classes except selenocysteine and pyrrolysine tRNA genes (88.1% and 100% respectively). Across bacterial phyla and a wide range of genome sizes, many lineages exist in which predominantly initiator tRNA genes template CCA. Convergent and parallel retention of CCA templating in initiator tRNA genes evolved in independent histories of reductive genome evolution in Bacteria. Also, in a majority of cyanobacterial and actinobacterial genera, predominantly initiator tRNA genes template CCA. We also found that a surprising fraction of archaeal tRNA genes template CCA. CONCLUSIONS: We suggest that cotranscriptional synthesis of initiator tRNA CCA 3\u27 ends can complement inefficient processing of initiator tRNA precursors, bootstrap rapid initiation of protein synthesis from a non-growing state, or contribute to an increase in cellular growth rates by reducing overheads of mass and energy to maintain nonfunctional tRNA precursor pools. More generally, CCA templating in structurally non-conforming tRNA genes can afford cells robustness and greater plasticity to respond rapidly to environmental changes and stimuli

    Initiator tRNA genes template the 3' CCA end at high frequencies in bacteria.

    Get PDF
    BackgroundWhile the CCA sequence at the mature 3' end of tRNAs is conserved and critical for translational function, a genetic template for this sequence is not always contained in tRNA genes. In eukaryotes and Archaea, the CCA ends of tRNAs are synthesized post-transcriptionally by CCA-adding enzymes. In Bacteria, tRNA genes template CCA sporadically.ResultsIn order to understand the variation in how prokaryotic tRNA genes template CCA, we re-annotated tRNA genes in tRNAdb-CE database version 0.8. Among 132,129 prokaryotic tRNA genes, initiator tRNA genes template CCA at the highest average frequency (74.1%) over all functional classes except selenocysteine and pyrrolysine tRNA genes (88.1% and 100% respectively). Across bacterial phyla and a wide range of genome sizes, many lineages exist in which predominantly initiator tRNA genes template CCA. Convergent and parallel retention of CCA templating in initiator tRNA genes evolved in independent histories of reductive genome evolution in Bacteria. Also, in a majority of cyanobacterial and actinobacterial genera, predominantly initiator tRNA genes template CCA. We also found that a surprising fraction of archaeal tRNA genes template CCA.ConclusionsWe suggest that cotranscriptional synthesis of initiator tRNA CCA 3' ends can complement inefficient processing of initiator tRNA precursors, "bootstrap" rapid initiation of protein synthesis from a non-growing state, or contribute to an increase in cellular growth rates by reducing overheads of mass and energy to maintain nonfunctional tRNA precursor pools. More generally, CCA templating in structurally non-conforming tRNA genes can afford cells robustness and greater plasticity to respond rapidly to environmental changes and stimuli

    Biosynthesis: A new (old) way of hijacking tRNA.

    Get PDF
    Aminoacylation of tRNA is the cellular process for providing aminoacyl donors for the ribosome synthesis of polypeptides. New research highlights an unexpected structural overlap between enzymes involved in this process and those involved in the biosynthesis of cyclodipeptides, an important class of bioactive molecules

    Regulation of cell death by transfer RNA.

    Get PDF
    SIGNIFICANCE: Both transfer RNA (tRNA) and cytochrome c are essential molecules for the survival of cells. tRNA decodes mRNA codons into amino-acid-building blocks in protein in all organisms, whereas cytochrome c functions in the electron transport chain that powers ATP synthesis in mitochondrion-containing eukaryotes. Additionally, in vertebrates, cytochrome c that is released from mitochondria is a potent inducer of apoptosis, activating apoptotic proteins (caspases) in the cytoplasm to dismantle cells. A better understanding of both tRNA and cytochrome c is essential for an insight into the regulation of cell life and death. RECENT ADVANCES: A recent study showed that the mitochondrion-released cytochrome c can be removed from the cell-death pathway by tRNA molecules. The direct binding of cytochrome c by tRNA provides a mechanism for tRNA to regulate cell death, beyond its role in gene expression. CRITICAL ISSUES: The nature of the tRNA-cytochrome c binding interaction remains unknown. The questions of how this interaction affects tRNA function, cellular metabolism, and apoptotic sensitivity are unanswered. FUTURE DIRECTIONS: Investigations into the critical issues raised above will improve the understanding of tRNA in the fundamental processes of cell death and metabolism. Such knowledge will inform therapies in cell death-related diseases

    A Label-Free Assay for Aminoacylation of tRNA

    Get PDF
    Aminoacylation of tRNA generates an aminoacyl-tRNA (aa-tRNA) that is active for protein synthesis on the ribosome. Quantification of aminoacylation of tRNA is critical to understand the mechanism of specificity and the flux of the aa-tRNA into the protein synthesis machinery, which determines the rate of cell growth. Traditional assays for the quantification of tRNA aminoacylation involve radioactivity, either with a radioactive amino acid or with a [3\u27-32P]-labeled tRNA. We describe here a label-free assay that monitors aminoacylation by biotinylation-streptavidin (SA) conjugation to the Ξ±-amine or the Ξ±-imine of the aminoacyl group on the aa-tRNA. The conjugated aa-tRNA product is readily separated from the unreacted tRNA by a denaturing polyacrylamide gel, allowing for quantitative measurement of aminoacylation. This label-free assay is applicable to a wide range of amino acids and tRNA sequences and to both classes of aminoacylation. It is more sensitive and robust than the assay with a radioactive amino acid and has the potential to explore a wider range of tRNA than the assay with a [3\u27-32P]-labeled tRNA. This label-free assay reports kinetic parameters of aminoacylation quantitatively similar to those reported by using a radioactive amino acid, suggesting its broad applicability to research relevant to human health and disease

    Conservation of structure and mechanism by Trm5 enzymes.

    Get PDF
    Enzymes of the Trm5 family catalyze methyl transfer from S-adenosyl methionine (AdoMet) to the NΒΉ of G37 to synthesize mΒΉ G37-tRNA as a critical determinant to prevent ribosome frameshift errors. Trm5 is specific to eukaryotes and archaea, and it is unrelated in evolution from the bacterial counterpart TrmD, which is a leading anti-bacterial target. The successful targeting of TrmD requires detailed information on Trm5 to avoid cross-species inhibition. However, most information on Trm5 is derived from studies of the archaeal enzyme Methanococcus jannaschii (MjTrm5), whereas little information is available for eukaryotic enzymes. Here we use human Trm5 (Homo sapiens; HsTrm5) as an example of eukaryotic enzymes and demonstrate that it has retained key features of catalytic properties of the archaeal MjTrm5, including the involvement of a general base to mediate one proton transfer. We also address the protease sensitivity of the human enzyme upon expression in bacteria. Using the tRNA-bound crystal structure of the archaeal enzyme as a model, we have identified a single substitution in the human enzyme that improves resistance to proteolysis. These results establish conservation in both the catalytic mechanism and overall structure of Trm5 between evolutionarily distant eukaryotic and archaeal species and validate the crystal structure of the archaeal enzyme as a useful model for studies of the human enzyme

    Isolation of a site-specifically modified RNA from an unmodified transcript

    Get PDF
    Natural RNAs contain many base modifications that have specific biological functions. The ability to functionally dissect individual modifications is facilitated by the identification and cloning of enzymes responsible for these modifications, but is hindered by the difficulty of isolating site-specifically modified RNAs away from unmodified transcripts. Using the m1G37 and m1A58 methyl modifications of tRNA as two examples, we demonstrate that non-pairing base modifications protect RNAs against the DNA-directed RNase H cleavage. This provide a new approach to obtain homogeneous RNAs with site-specific base modifications that are suitable for biochemical and functional studies

    Control of catalytic cycle by a pair of analogous tRNA modification enzymes.

    Get PDF
    Enzymes that use distinct active site structures to perform identical reactions are known as analogous enzymes. The isolation of analogous enzymes suggests the existence of multiple enzyme structural pathways that can catalyze the same chemical reaction. A fundamental question concerning analogous enzymes is whether their distinct active-site structures would confer the same or different kinetic constraints to the chemical reaction, particularly with respect to the control of enzyme turnover. Here, we address this question with the analogous enzymes of bacterial TrmD and its eukaryotic and archaeal counterpart Trm5. TrmD and Trm5 catalyze methyl transfer to synthesize the m1G37 base at the 3\u27 position adjacent to the tRNA anticodon, using S-adenosyl methionine (AdoMet) as the methyl donor. TrmD features a trefoil-knot active-site structure whereas Trm5 features the Rossmann fold. Pre-steady-state analysis revealed that product synthesis by TrmD proceeds linearly with time, whereas that by Trm5 exhibits a rapid burst followed by a slower and linear increase with time. The burst kinetics of Trm5 suggests that product release is the rate-limiting step of the catalytic cycle, consistent with the observation of higher enzyme affinity to the products of tRNA and AdoMet. In contrast, the lack of burst kinetics of TrmD suggests that its turnover is controlled by a step required for product synthesis. Although TrmD exists as a homodimer, it showed half-of-the-sites reactivity for tRNA binding and product synthesis. The kinetic differences between TrmD and Trm5 are parallel with those between the two classes of aminoacyl-tRNA synthetases, which use distinct active site structures to catalyze tRNA aminoacylation. This parallel suggests that the findings have a fundamental importance for enzymes that catalyze both methyl and aminoacyl transfer to tRNA in the decoding process
    • …
    corecore